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“Privacy is the ability of an individual or group to
seclude themselves or information about themselves, and
thereby express themselves selectively.” - Wikipedia.
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General Data Protection Regulation (GDPR)

“The GDPR is the toughest privacy and security law in the
world. It was drafted and passed by the European Union (EU), it

imposes obligations onto organizations anywhere, so long as
they target or collect data related to people in the EU.”

[1] EU General Data Protection Regulation (GDPR):
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation), OJ 2016 L 119/1.
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Europe fit for the Digital Age (21 Apr. 2021)

The Commission proposes today new rules and actions aiming to

turn Europe into the global hub for trustworthy Al following a risk-
based approach

- Unacceptable risk (e.g. voice assistants encouraging dangerous behaviors,
systems allowing social scoring).

- High-risk (e.g. Al application in robot-assisted surgery, evaluation of the reliability
of evidence, scoring of exams).

- Limited risk (e.g. chatbots).
- Minimal risk (e.g. Al-enabled video games, spam filters).
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[2] Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
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[3] N. Bouacida and P. Mohapatra, “Vulnerabilities in federated learning,” IEEE Access, vol. 9, pp. 63 229-63 249, 2021.
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I Membership inference attacks
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[4] Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.



I Membership inference attacks
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[4] [5]

[4] Shokri, Reza, et al. "Membership inference attacks against machine learning models.” 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.
[5] Liu, Gaoyang, et al. "Socinf: Membership inference attacks on social media health data with machine learning."
IEEE Transactions on Computational Social Systems 6.5 (2019): 907-921.
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. DIFFEﬁENTIAL PRIVACY




“Differential privacy is a system for publicly sharing
information about a dataset by describing the patterns of
groups within the dataset while withholding information
about the individuals in the dataset.” - Wikipedia.



Definition 1

A random mechanism M: D — R with domain D and range R satisfies
e-differential privacy if for any two adjacent inputs d,d' € D and for any
subset of outputs S € R it holds that

PrIM(d) € S] < e®Pr|M(d') € S].

[6] Dwork, Cynthia, et al. "Our data, ourselves: Privacy via distributed noise generation." EUROCRYPT. Springer, Berlin, Heidelberg, 2006.
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Property 1- (Sequential) Composability

Let M4, ..., M,, be n independent random mechanisms whose differential
privacy guarantees are ¢, ..., &,, respectively. Then for any function g
holds that

n

E(g(Ml, rMn)) - z Ej-

=1

If all the components of a mechanism are differentially private, then so
Is their composition.

[6] Dwork, Cynthia, et al. "Our data, ourselves: Privacy via distributed noise generation." EUROCRYPT. Springer, Berlin, Heidelberg, 2006.
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Property 2 - Group privacy

A random mechanism M: D — R with domain D and range R satisfies
e-differential privacy if for any two inputs d,d' € D with distance c and
for any subset of outputs S € R it holds that

Pr[M(d) € S] < efPr[M(d") € S]],

[6] Dwork, Cynthia, et al. "Our data, ourselves: Privacy via distributed noise generation." EUROCRYPT. Springer, Berlin, Heidelberg, 2006. 10



Property 3 - Robustness

Given a random mechanism M let F be a deterministic or randomized
function defined over the image of M. Then if M satisfies s-differential
privacy, so does F(M).

[6] Dwork, Cynthia, et al. "Our data, ourselves: Privacy via distributed noise generation." EUROCRYPT. Springer, Berlin, Heidelberg, 2006. 11



Definition 2

A random mechanism M: D — R with domain D and range R satisfies
(&, 8)-differential privacy if for any two adjacent inputs d,d’ € D and for
any subset of outputs S € R it holds that

PrIM(d) € S| < e®Pr|M(d') € S| + 6,

where § < |71| Is the possibility that s-differential privacy is broken.

[6] Dwork, Cynthia, et al. "Our data, ourselves: Privacy via distributed noise generation." EUROCRYPT. Springer, Berlin, Heidelberg, 2006.
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Gaussian noise mechanism

A common paradigm for approximating a deterministic real-valued
function f: D — R with a differentially private mechanism is via additive

noise calibrated to f sensitivity Sy = max(|f(d) — f(d")|) where d and d’
are two adjacent inputs.

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Gaussian noise mechanism

The Gaussian noise mechanism is defined as
M(d) £ f(d) + N (0,S¢fa?),

where N (0, S}az) is the normal Gaussian distribution with mean O and
standard deviation Sya.

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Gaussian noise mechanism

The Gaussian noise mechanism is defined as

M(d) £ f(d) + N (0,S¢fa?),
where N (0, S}az) is the normal Gaussian distribution with mean O and
standard deviation Sya.

The analysis of the mechanism can be applied post hoc, and there are
infinitely many (¢, &) pairs that satisfy DP requirements 1°).

Due to composition theorems, the mechanism can be iteratively
applied in Stochastic Gradient Descent algorithms.

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Definition 3
Let M: D — R be a randomized mechanism and d,d’ € D a pair of

adjacent databases. Let aux denote an auxiliary input. For an outcome
o € R, the privacy loss at o is defined as

Pr|M(aux,d) = o]
Pr[M(aux,d") = o]

c(o; M, aux,d,d") £ log

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Definition 4
Let M: D — R be a randomized mechanism and d,d’ € Da pair of

adjacent databases. Let aux denote an auxiliary input. The moments
accountant is defined as

ay(d) £ max ay(4;aux,d,d’),
aux,d,d!

where ay(2; aux,d,d") £ logE - ycaux,a)[e*¢OM %24 js the moment
generating function evaluated at value A.

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,znx}, loss function L(0) =

Differentia"y ~ > L(6, ;). Parameters: learning rate 7, noise scale
ivate SGD o, group size L, gradient norm bound C.
private Initialize 6y randomly

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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for t € [T] do
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Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Differentia"y ~ > L(6, ;). Parameters: learning rate 7, noise scale
. o, group size L, gradient norm bound C.
private SGD Initialize 6 randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N

Compute gradient

For each ¢ € L;, compute g¢(x:) < Vo, L(0:, z4)
Clip gradient

gi(x;) < gt(:cz-)/ max (1’ M)

Add noise

g+ + 3, (&(x:) + N(0,0°C?T))

Descent

Or11 < O — i8S

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,znx}, loss function L(0) =

Differentia"y ~ > L(6, ;). Parameters: learning rate 7, noise scale
. o, group size L, gradient norm bound C.
private SGD Initialize 6 randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N

Compute gradient

For each i € L;, compute g:(x;) <+ Vg, L(0:, ;)

Clip gradient

& () < g¢(x;)/ max (1, I|gt(gq:)l|2)

Add noise

gt % S (8¢(x;) + N(0,0°C?T))

Descent

0141 < 0 — Nt
Output 0r and compute the overall privacy cost (g,9)
using a privacy accounting method.

[8] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
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TensorFlow Privacy

Train deep learning models using DP Optimizers and vectorized losses.

The privacy analysis is performed in the framework of Rényi Differential
Privacy.

— r —){]E

Privacy EE

— r —){]%

privacy Eﬂ

[10] Mironov, llya. "Rényi differential privacy." 2017 IEEE 30th computer security foundations symposium (CSF). IEEE, 2017.

18



TensorFlow
Privacy

Effect of Increasing Hyperparameters On Privacy/Utility/Speed

DP-Optimizers take three additional hyperparameters:
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DP-Optimizers take three additional hyperparameters:

- Number of microbatches B (number of microbatches into which each
Te n SO r F I OW minibatch is split).

Privacy

Effect of Increasing Hyperparameters On Privacy/Utility/Speed
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DP-Optimizers take three additional hyperparameters:

- Number of microbatches B (number of microbatches into which each
Te n SO r F I OW minibatch is split).
B - Clipping norm C (the maximum I2 norm of each individual gradient
P r lva cy computed per minibatch).

Effect of Increasing Hyperparameters On Privacy/Utility/Speed

Hyperparameter Privacy Utility Speed
Number of microbatches B /7 N
Clipping norm C ?
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DP-Optimizers take three additional hyperparameters:

- Number of microbatches B (number of microbatches into which each
Te n SO r F I OW minibatch is split).
B - Clipping norm C (the maximum I2 norm of each individual gradient
P r Iva cy computed per minibatch).

- Noise multiplier o (ratio of the standard deviation to the clipping norm).

Effect of Increasing Hyperparameters On Privacy/Utility/Speed

Hyperparameter Privacy Utility Speed
Number of microbatches B 7 N

Clipping norm C ?

Noise multiplier o 7 N

19



I A simple example: CIFAR10
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[11] Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009).
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A simple example: CIFAR10

The results of logistic regression-based membership inference attacks
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I A world of vulnerabilities...
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N. Bouacida and P. Mohapatra, “Vulnerabilities in federated learning,” IEEE Access, vol. 9, pp. 63 229-63 249, 2021.
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Federated Learning (FL) Generative Models (GM) Differential Privacy (DP)
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[12] Higgins, L. Mattheyet al. “beta-vae: Learning basic visual con-cepts with a constrained variational framework,”
in 2017 InternationalConference on Learning Representations (ICLR), 2017.



The ingredients
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» Hypothesis: each member has enough
hardware capabilities and skills

« Every member of the federated party trains
all the models with strict (&, §)-DP constraints
(¢ <2,6 <1074, RDP = 8)

[12] Higgins, L. Mattheyet al. “beta-vae: Learning basic visual con-cepts with a constrained variational framework,”
in 2017 InternationalConference on Learning Representations (ICLR), 2017.
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The method
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The results

Average improvement on local data

Accuracy F1 score AUC
Dataset

Real Synth Real Synth Real Synth
Titanic 75.67 80.87 1943 63.37 757 78.35
Breast Cancer 89.67 97.09 9337 97.81 99.17 99.27
Mushrooms 92.93 93.49 9243 93.14 9623 96.61
Adult 80.64 79.65 49.69 61.64 8330 83.73
Wine Quality 0346 98.54 8298 97.10 9944 99.49
MNIST 08.20 98.72 9816 9871 99.02 99.31
Fashion MNIST  88.47 89.30 88.32 89.22 9387 94.76
Avg. Improvement +2.66 +10.94 +0.68

Average improvement on external data

Accuracy F1 score AUC
Dataset

Real Synth Real Synth Real Synth
Titanic 71.83 74.01 2970 56.00 77.14 77.43
Breast Cancer 89.42 93.02 9225 94.78 99.60 99.76
Mushrooms 9256 93.49 9192 93.14 9630 96.61
Adult 80.87 79.00 50.14 60.21 84.02 84.08
Wine Quality 9257 97.79 8242 95.70 98.63 98.65
MNIST 9776  98.49 97.71 98.49 99.02 99.19
Fashion MNIST 8597 88.13 8581 88.04 9265 94.13
Avg. Improvement +1.85 +8.06 +0.36
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